Coarsening dynamics in one dimension: the phase diffusion equation and its numerical implementation.

نویسندگان

  • Matteo Nicoli
  • Chaouqi Misbah
  • Paolo Politi
چکیده

Many nonlinear partial differential equations (PDEs) display a coarsening dynamics, i.e., an emerging pattern whose typical length scale L increases with time. The so-called coarsening exponent n characterizes the time dependence of the scale of the pattern, L(t)≈t(n), and coarsening dynamics can be described by a diffusion equation for the phase of the pattern. By means of a multiscale analysis we are able to find the analytical expression of such diffusion equations. Here, we propose a recipe to implement numerically the determination of D(λ), the phase diffusion coefficient, as a function of the wavelength λ of the base steady state u(0)(x). D carries all information about coarsening dynamics and, through the relation |D(L)|=/~L(2)/t, it allows us to determine the coarsening exponent. The main conceptual message is that the coarsening exponent is determined without solving a time-dependent equation, but only by inspecting the periodic steady-state solutions. This provides a much faster strategy than a orward time-dependent calculation. We discuss our method for several different PDEs, both conserved and not conserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamics and Coarsening of Interfaces for the ViscousCahn - Hilliard Equation in One Spatial

In one spatial dimension, the metastable dynamics and coarsening process of an n-layer pattern of internal layers is studied for the Cahn-Hilliard equation, the viscous Cahn-Hilliard equation, and the constrained Allen-Cahn equation. These models from the continuum theory of phase transitions provide a caricature of the physical process of the phase separation of a binary alloy. A homotopy para...

متن کامل

Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters

Numerical simulations with the Cahn-Hilliard equation show that coarsening of fractal clusters (FCs) is not a scale-invariant process. On the other hand, a typical coarsening length scale and interfacial area of the FC exhibit power laws in time, while the mass fractal dimension remains invariant. The initial value of the lower cutoff is a relevant length scale. A sharp-interface model is formu...

متن کامل

Refined Upper Bounds on the Coarsening Rate of Discrete, Ill-posed Diffusion Equations

We study coarsening phenomena observed in discrete, ill-posed diffusion equations that arise in a variety of applications, including computer vision, population dynamics, and granular flow. Our results provide rigorous upper bounds on the coarsening rate in any dimension. Heuristic arguments and numerical experiments we perform indicate that the bounds are in agreement with the actual rate of c...

متن کامل

Coarsening dynamics of the convective Cahn-Hilliard equation

We characterize the coarsening dynamics associated with a convective Cahn-Hilliard equation (cCH) in one space dimension. First, we derive a sharp-interface theory through a matched asymptotic analysis. Two types of phase boundaries (kink and anti-kink) arise, due to the presence of convection, and their motions are governed to leading order by a nearest-neighbors interaction coarsening dynamic...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 2013